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                                       Push Down Automata 

pushdown automata can recognize all deterministic context-free languages while nondeterministic ones can 

recognize all context-free languages, with the former often used in parser design. 

 

The term "pushdown" refers to the fact that the stack can be regarded as being "pushed down" like a tray 

dispenser at a cafeteria, since the operations never work on elements other than the top element. A stack 

automaton, by contrast, does allow access to and operations on deeper elements. Stack automata can 

recognize a strictly larger set of languages than pushdown automata. A nested stack automaton allows 

full access, and also allows stacked values to be entire sub-stacks rather than just single finite symbols. 

 

Informal description 

A diagram of a pushdown automaton 

 

A finite state machine just looks at the input signal and the current state: it has no stack to work 

with. It chooses a new state, the result of following the transition. A pushdown automaton (PDA) 

differs from a finite state machine in two ways: 

 

1. It can use the top of the stack to decide which transition to take. 

2. It can manipulate the stack as part of performing a transition. 

 

A pushdown automaton reads a given input string from left to right. In each step, it chooses a 

transition by indexing a table by input symbol, current state, and the symbol at the top of the stack. A 

pushdown automaton can also manipulate the stack, as part of performing a transition. The 

manipulation can be to push a particular symbol to the top of the stack, or to pop off the top of the stack. 

The automaton can alternatively ignore the stack, and leave it as it is. 

 

Put together: Given an input symbol, current state, and stack symbol, the automaton can follow a 

transition to another state, and optionally manipulate (push or pop) the stack. 

 

If, in every situation, at most one such transition action is possible, then the automaton is called a 

deterministic pushdown automaton (DPDA). In general, if several actions are possible, then the 

automaton is called a general, or nondeterministic, PDA. A given input string may drive a 

nondeterministic pushdown automaton to one of several configuration sequences; if one of them leads to 

an accepting configuration after reading the complete input string, the latter is said to belong to the 

language accepted by the automaton. 

 

 

 

Definition of the Pushdown Automaton: 

https://en.wikipedia.org/wiki/Deterministic_pushdown_automata
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Nested_stack_automaton
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
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Formal definition 

We use standard formal language notation: denotes the set of strings over alphabet and denotes the 

empty string. 

 

A PDA is formally defined as a 7-tuple: where 

is a finite set of states 

 is a finite set which is called the input alphabet 

 

 is a finite set which is called the stack alphabet 

 

 is a finite subset of , the transition relation. 

 

 is the start state 

 

 is the initial stack symbol 

 

 is the set of accepting states 

 

An element is a transition of . It has the intended meaning that , in state , on the input and with as 

topmost stack symbol, may read , change the state to , pop , replacing it by pushing . The component of 

the transition relation is used to formalize that the PDA can either read a letter from the input, or proceed 

leaving the input untouched. 

 

In many texts the transition relation is replaced by an (equivalent) formalization, where 

 

 

 is the transition function, mapping into finite subsets of 

 

Here contains all possible actions in state with on the stack, while reading on the input. One writes 

for example precisely when because . Note that finite in this definition is essential. 

Computations 

 

 

 

https://en.wikipedia.org/wiki/Empty_string
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A step of the pushdown automaton 

 

In order to formalize the semantics of the pushdown automaton a description of the current 

situation is introduced. Any 3-tuple is called an instantaneous description (ID) of , which includes the 

current state, the part of the input tape that has not been read, and the contents of the stack (topmost 

symbol written first). The transition relation defines the step-relation of on instantaneous descriptions. 

For instruction there exists a step , for every and every .In general pushdown automata are 

nondeterministic meaning that in a given instantaneous description there may be several possible steps. 

Any of these steps can be chosen in a computation. With the above definition in each step always a 

single symbol (top of the stack) is popped, replacing it with as many symbols as necessary. As a 

consequence no step is defined when the stack is empty.Computations of the pushdown automaton are 

sequences of steps. The computation starts in the initial state with the initial stack symbol on the stack, 

and a string on the input tape, thus with initial description . There are two modes of accepting. The 

pushdown automaton either accepts by final state, which means after reading its input the automaton 

reaches an accepting state (in ), or it accepts by empty stack (), which means after reading its input the 

automaton empties its stack. The first acceptance mode uses the internal memory (state), the second the 

external memory (stack). 

 

Formally one defines 

 

1. with and (final state) 

2. with (empty stack) 

 

Here represents the reflexive and transitive closure of the step relation meaning any number of 

consecutive steps (zero, one or more).For each single pushdown automaton these two languages need to 

have no relation: they may be equal but usually this is not the case. A specification of the automaton 

should also include the intended mode of acceptance. Taken over all pushdown automata both 

acceptance conditions define the same family of languages. 

 

Theorem. For each pushdown automaton one may construct a pushdown automaton such that , and 

vice versa, for each pushdown automaton one may construct a pushdown automaton such that 

Example 

The following is the formal description of the PDA which recognizes the language by final state: 

 

 

PDA for 

(by final state), where 

 

 states: 

 input alphabet: 

 stack alphabet: 
 start state: 
 start stack symbol: Z 
 accepting states: 
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The transition relation consists of the following six instructions:,,,,, and.In words, the first two 

instructions say that in state p any time the symbol 0 is read, one A is pushed onto the stack. 

Pushing symbol A on top of another A is formalized as replacing top A by AA (and similarly for pushing 

symbol A on top of a Z).The third and fourth instructions say that, at any moment the automaton may 

move from state p to state q.The fifth instruction says that in state q, for each symbol 1 read, one A is 

popped. 

 

Finally, the sixth instruction says that the machine may move from state q to accepting state r only 

when the stack consists of a single Z.There seems to be no generally used representation for PDA. Here 

we have depicted the instruction by an edge from state p to state q labelled by (read a; replace A by ). 

 

Understanding the computation process 

Accepting computation for 0011 

The following illustrates how the above PDA computes on different input strings. The subscript 

M from the step symbol is here omitted. 

 

a. Input string = 0011. There are various computations, depending on the moment the move from 

state p to state q is made. Only one of these is accepting. 

i. The final state is accepting, but the input is not accepted this way as it has not been 

read. 

ii. No further steps possible. 

iii. Accepting computation: ends in accepting state, while complete input has been read. 

b. Input string = 00111. Again there are various computations. None of these is accepting. 

i. The final state is accepting, but the input is not accepted this way as it has not been 

read. 

ii. No further steps possible. 

iii. The final state is accepting, but the input is not accepted this way as it has not been 

(completely) read. 

 

Description 

A pushdown automaton (PDA) is a finite state machine which has an additional stack storage. The 

transitions a machine makes are based not only on the input and current state, but also on the stack. The 

formal definition (in our textbook) is that a PDA is this: 

M = (K,Σ,Γ,Δ,s,F) where K = finite state set 

 

 Σ = finite input alphabet 

 Γ = finite stack alphabet 

 s ∈ K: start state 

 F ⊆ K: final states 

 The transition relation, Δ is a finite subset of (K×(Σ𝖴{ε})×Γ*) × (K×Γ*) 

 

We have to have the finite qualifier because the full subset is infinite by virtue of the Γ* 

component. The meaning of the transition relation is that, for σ ∈ Σ, if ((p,σ,α),(q,β)) ∈ Δ: 
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 the current state is p 

 the current input symbol is σ 

 the string at the top of the stack is α then: 

 

 the new state is q 

 replace α on the top of the stack by β (pop the α and push the β) 

Otherwise, if ((p,ε,α),(q,β)) ∈ Δ, this means that if 

 the current state is p 

 the string at the top of the stack is α then (not consulting the input symbol), we can 

 

 change the state is q 

 replace α on the top of the stack by β 

 

Machine Configuration, yields, acceptance 

A machine configuration is an element of K×Σ*×Γ*. 

(p,w,γ) = current state, unprocessed input, stack content) We 

define the usual yields relationships: 

(p,σw,αγ) ⊢ (q,w,βγ) if ((p,σ,α),(q,β)) ∈ Δ or (p,w,αγ) ⊢ (q,w,βγ) if ((p,ε,α),(q,β)) ∈ Δ As 

expected, ⊢* is the reflexive, transitive closure of ⊢. 

A string w is accepted by the PDA if 

(s,w,ε) ⊢* (f,ε,ε) 

Namely, from the start state with empty stack, we 

 

 process the entire string, 

 end in a final state 

 end with an empty stack. 

 

The language accepted by a PDA M, L(M), is the set of all accepted strings. 

The empty stack is our key new requirement relative to finite state machines. The examples that we 

generate have very few states; in general, there is so much more control from using the stack memory. 

Acceptance by empty stack only or final state only is addressed in problems 3.3.3 and 3.3.4. 

Graphical Representation and ε-transition 

The book does not indicate so, but there is a graphical representation of PDAs. A transition  

 

((p,x,α),(q,β)) where x = ε or x ∈ Σ would be depicted like this (respectively): 

 

            or  
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The stack usage represented by α/β 

represents these actions: 

 

 the top of the stack must match α 

 if we make the transition, pop α and push β 

 

A PDA is non-deterministic. There are several forms on non-determinism in the description: 

 

 Δ is a relation 

 there are ε-transitions in terms of the input 

 there are ε-transitions in terms of the stack contents 

The true PDA ε-transition, in the sense of being equivalent to the NFA ε-transition is this: 

 

because it consults neither the input, nor the stack and will leave the previous configuration intact. 

 

Palindrome examples 

These are examples 3.3.1 and 3.3.2 in the textbook. The first is this: 

 

{x ∈ {a,b,c}* : x = wcwR for w ∈ {a,b}*} 

 

 

 

 

 

The machine pushes a's and b's in state s, makes a transition to f when it sees the middle marker, c, and 

then matches input symbols with those on the stack and pops the stack symbol. Non- accepting string 

examples are these: 

ε in state s 

ab in state s with non-empty stack 

abcab  in state f with unconsumed input and non-empty stack abcb in 

state f with non-empty stack 

abcbab in state f with unconsumed input and empty stack 

Observe that this PDA is deterministic in the sense that there are no choices in transitions. The 

second example is: 

{x ∈ {a,b}* : x = wwR for w ∈ {a,b}*} 

 

 

 

 

 

This PDA is identical to the previous one 

except for the ε-transition 
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Nevertheless, there is a significant difference in that this PDA must guess when to stop pushing 

symbols, jump to the final state and start matching off of the stack. Therefore this machine is decidedly 

non-deterministic. In a general programming model (like Turing Machines), we have the luxury of 

preprocessing the string to determine its length and thereby knowing when the middle is coming. 

 

The anbn language 

The language is L = { w ∈ {a,b}* : w = anbn, n ≥ 0 }. Here are two PDAs for L: 

 

 

and 

 

 

The idea in both of these machines is to stack the a's and match off the b's. The first one is non- 

deterministic in the sense that it could prematurely guess that the a's are done and start matching off b's. 

The second version is deterministic in that the first b acts as a trigger to start matching off. Note that we 

have to make both states final in the second version in order to accept ε. 

 

The equal a's and b's language 

This is example 3.3.3 in the textbook. Let us use the convenience notation: 

#σ(w) = the number of occurrences of σ in w 

The language is L = {w ∈ {a,b}*: #a(w) = #b(w) }. Here is the PDA: 

 

As you can see, most of the activity surrounds the behavior in state q. The idea is have the stack 

maintain the excess of one symbol over the other. In order to achieve our goal, we must know when the 

stack is empty. 

Empty Stack Knowledge 

There is no mechanism built into a PDA to determine whether the stack is empty or not. It's 

important to realize that the transition: 

 

           x = σ ∈ Σ or ε 

means to do so without consulting the stack; it says nothing about whether the stack is empty or not. 

Nevertheless, one can maintain knowledge of an empty stack by using a dedicated stack symbol, c, 

representing the "stack bottom" with these properties: 

 it is pushed onto an empty stack by a transition from the start state with no other outgoing or 

incoming transitions 

 it is never removed except by a transition to state with no other outgoing transitions 
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Behavior of PDA 

The three groups of loop transitions in state q represent these respective functions: 

 

 input a with no b's on the stack: push a 

 input b with no a's on the stack: push b 

 input a with b's on the stack: pop b; or, input b with a's on the stack: pop a 

 

For example if we have seen 5 b's and 3 a's in any order, then the stack should be "bbc". The transition 

to the final state represents the only non-determinism in the PDA in that it must guess when the input is 

empty in order to pop off the stack bottom. 

 

DPDA/DCFL 

The textbook defines DPDAs (Deterministic PDAs) and DCFLs (Deterministic CFLs) in the 

introductory part of section 3.7. According to the textbook's definition, a DPDA is a PDA in which 

no state p has two different outgoing transitions 

((p,x,α),(q,β)) and ((p,x′,α′),(q′,β′)) 

which are compatible in the sense that both could be applied. A DCFL is basically a language which 

accepted by a DPDA, but we need to qualify this further. 

We want to argue that the language L = { w ∈ {a,b}* : #a(w) = #b(w)} is deterministic context free 

in the sense there is DPDA which accepts it. 

In the above PDA, the only non-determinism is the issue of guessing the end of input; however this 

form of non-determinism is considered artificial. When one considers whether a language L supports a 

DPDA or not, a dedicated end-of-input symbol is always added to strings in the language. 

Formally, a language L over Σ is deterministic context free, or L is a DCFL , if L$ is 

accepted by a DPDA M 

where $ is a dedicated symbol not belonging to Σ. The significance is that we can make 

intelligent usage of the knowledge of the end of input to decide what to do about the stack. In our case, 

we would simply replace the transition into the final state by: 

 

With this change, our PDA is now a DPDA: 

 
 

a*b* examples 

Two common variations on a's followed by b's. When they're equal, no stack bottom is necessary. 

When they're unequal, you have to be prepared to recognize that the stacked a's have been completely 

matched or not. 
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a. { anbn : n ≥ 0 } 

 

 

 

 

 

 

b. { ambn : 0 ≤ m 

< n } 

Let's look at a few sample runs of (b). The idea is that you cannot enter the final state with an "a" still on 

the stack. Once you get to the final state, you can consume remaining b's and end marker. 

We can start from state 1 with the stack bottom pushed on: 

success: abb 

state input stack 

 

1 abb$ c 

1 bb$ ac 

2 b$ ac 

2 $ c 

3 ε ε 

success: abbbb state input

 stack 

1 abbbb$ c 

 

1 bbbb$ ac 

 

2 bbb$ ac 

 

2 bb$ c 

 

3 b$ ε 

 

3 $ ε 
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3 ε ε (fail: 

ab) 

state input stack 

 
1 ab$ c 

1 b$ ac 

2 $ ac 

(fail: ba) 

state input stack 

 

1 ba$ c 

 

2 a$ c 

 

Observe that a string like abbba also fails due to the inability to consume the very last a. 

Equivalence of PDA’s and CFG’s: 

If a grammar G is context-free, we can build an equivalent nondeterministic PDA which accepts the 

language that is produced by the context-free grammar G. A parser can be built for the grammar G. 

 

Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed where 

 

L(G) = L(P) 

In the next two topics, we will discuss how to convert from PDA to CFG and vice versa. 

 

 

 

Algorithm to find PDA corresponding to a given CFG 

Input − A CFG, G = (V, T, P, S) 

 

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) Step 1 − 

Convert the productions of the CFG into GNF. Step 2 − The 

PDA will have only one state {q}. 

Step 3 − The start symbol of CFG will be the start symbol in the PDA. 

 

Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the 

terminals of the CFG will be the input symbols of the PDA. 
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Step 5 − For each production in the form A → aX where a is terminal and A, X are combination of 

terminal and non-terminals, make a transition δ (q, a, A). 

 

Problem 

 

Construct a PDA from the following CFG. 

 

G = ({S, X}, {a, b}, P, S) 

 

where the productions are − 

 

S → XS | ε , A → aXb | Ab | ab 

 

Solution 

 

Let the equivalent PDA, 

 

P = ({q}, {a, b}, {a, b, X, S}, δ, q, S) 

 

where δ − 

 

δ(q, ε , S) = {(q, XS), (q, ε )} 

 

δ(q, ε , X) = {(q, aXb), (q, Xb), (q, ab)} δ(q, a, 

a) = {(q, ε )} 
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δ(q, 1, 1) = {(q, ε )} 

 

Algorithm to find CFG corresponding to a given PDA 

Input − A CFG, G = (V, T, P, S) 

 

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) such that the non- terminals of the grammar G will 

be {Xwx | w,x ∈ Q} and the start state will be Aq0,F. 

 

Step 1 − For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ ∑, if δ (w, a, ε) contains (y, m) and (z, b, m) contains (x, 

ε), add the production rule Xwx → a Xyzb in grammar G. 

 

Step 2 − For every w, x, y, z ∈ Q, add the production rule Xwx → XwyXyx in grammar G. 

 

Step 3 − For w ∈ Q, add the production rule Xww → ε in grammar G. 

 

Parsing is used to derive a string using the production rules of a grammar. It is used to check the 

acceptability of a string. Compiler is used to check whether or not a string is syntactically correct. A 

parser takes the inputs and builds a parse tree. 

 

A parser can be of two types − 

 

 Top-Down Parser − Top-down parsing starts from the top with the start-symbol and 

derives a string using a parse tree. 

 Bottom-Up Parser − Bottom-up parsing starts from the bottom with the string and comes 

to the start symbol using a parse tree. 

 

Design of Top-Down Parser 

For top-down parsing, a PDA has the following four types of transitions − 

 

 Pop the non-terminal on the left hand side of the production at the top of the stack and push 

its right-hand side string. 

 If the top symbol of the stack matches with the input symbol being read, pop it. 

 Push the start symbol ‘S’ into the stack. 

 If the input string is fully read and the stack is empty, go to the final state ‘F’. 

 

Example 

 

Design a top-down parser for the expression "x+y*z" for the grammar G with the following 

production rules − 

 

P: S → S+X | X, X → X*Y | Y, Y → (S) | id 
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Solution 

 

If the PDA is (Q, ∑, S, δ, q0, I, F), then the top-down parsing is − (x+y*z, 

I) ⊢(x +y*z, SI) ⊢ (x+y*z, S+XI) ⊢(x+y*z, X+XI) 

⊢(x+y*z, Y+X I) ⊢(x+y*z, x+XI) ⊢(+y*z, +XI) ⊢ (y*z, XI) 

 

⊢(y*z, X*YI) ⊢(y*z, y*YI) ⊢(*z,*YI) ⊢(z, YI) ⊢(z, zI) ⊢(ε, I) 

 

Design of a Bottom-Up Parser 

For bottom-up parsing, a PDA has the following four types of transitions − 

 

 Push the current input symbol into the stack. 

 Replace the right-hand side of a production at the top of the stack with its left-hand side. 

 If the top of the stack element matches with the current input symbol, pop it. 

 If the input string is fully read and only if the start symbol ‘S’ remains in the stack, pop it and go 

to the final state ‘F’. 

 

Example 

 

Design a top-down parser for the expression "x+y*z" for the grammar G with the following 

production rules − 

 

P: S → S+X | X, X → X*Y | Y, Y → (S) | id 

 

Solution 

 

If the PDA is (Q, ∑, S, δ, q0, I, F), then the bottom-up parsing is − (x+y*z, 

I) ⊢ (+y*z, xI) ⊢ (+y*z, YI) ⊢ (+y*z, XI) ⊢ (+y*z, SI) 

⊢(y*z, +SI) ⊢ (*z, y+SI) ⊢ (*z, Y+SI) ⊢ (*z, X+SI) ⊢ (z, *X+SI) 

 

⊢ (ε, z*X+SI) ⊢ (ε, Y*X+SI) ⊢ (ε, X+SI) ⊢ (ε, SI) 

 

 

Deterministic Pushdown Automata: 

In automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the 

pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-

free languages, a proper subset of context-free languages. 

https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language
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Machine transitions are based on the current state and input symbol, and also the current topmost 

symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect. 

Machine actions include pushing, popping, or replacing the stack top. A deterministic pushdown 

automaton has at most one legal transition for the same combination of input symbol, state, and top 

stack symbol. This is where it differs from the nondeterministic pushdown automaton. 

 

 

 

Formal definition 

A (not necessarily deterministic) PDA can be defined as a 7-tuple: 

 

Where is a finite set of states 

 
 is a finite set of input symbols 
 is a finite set of stack symbols 
 is the start state 
 is the starting stack symbol 
 , where is the set of accepting states 
 is a transition function, wherewhere is the Kleene star, meaning that is "the set of all finite 

strings (including the empty string ) of elements of ", denotes the empty string, and is the 

power set of a set .M is deterministic if it satisfies both the following conditions: 

 

 For any , the set has at most one element. 

 

 For any , if , then for every 

 

There are two possible acceptance criteria: acceptance by empty stack and acceptance by final state. 

The two are not equivalent for the deterministic pushdown automaton (although they are for the non-

deterministic pushdown automaton). The languages accepted by empty stack are those languages that 

are accepted by final state and are prefix-free: no word in the language is the prefix of another word in 

the language. 

 

The usual acceptance criterion is final state, and it is this acceptance criterion which is used to define 

the deterministic context-free languages. 

 

Languages recognized 

If is a language accepted by a PDA , it can also be accepted by a DPDA if and only if there is a single 

computation from the initial configuration until an accepting one for all strings belonging to . If can be 

accepted by a PDA it is a context free language and if it can be accepted by a DPDA it is a 

deterministic context-free language. 

 

Not all context-free languages are deterministic. This makes the DPDA a strictly weaker device than 

the PDA. For example, the language of even-length palindromes on the alphabet of 0 and 1 

https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Power_set
https://en.wikipedia.org/wiki/Deterministic_context-free_languages
https://en.wikipedia.org/wiki/Palindrome
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has the context-free grammar S → 0S0 | 1S1 | ε. An arbitrary string of this language 

cannot be parsed without reading all its letters first which means that a pushdown 

automaton has to try alternative state transitions to accommodate for the different possible 

lengths of a semi-parsed string. 

 

Restricting the DPDA to a single state reduces the class of languages accepted to the LL(1) languages. In 

the case of a PDA, this restriction has no effect on the class of languages accepted. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

https://en.wikipedia.org/wiki/LL%281%29_language
https://en.wikipedia.org/wiki/LL%281%29_language
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