

Department of CSE Page 1

Context-Free Grammars
Definition of Context-Free Grammars, Derivations Using a Grammar,

Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential

Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in

Grammars and Languages.

Push Down Automata
Definition of the Pushdown Automaton, the Languages of a PDA,

Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by

empty stack, Deterministic Pushdown Automata. From CFG to PDA, From PDA

to CFG.

UNIT - III

Department of CSE Page 2

Department of CSE Page 3

Department of CSE Page 4

Department of CSE Page 5

Department of CSE Page 6

Department of CSE Page 7

Department of CSE Page 8

Department of CSE Page 9

Department of CSE Page 10

Department of CSE Page 11

Department of CSE Page 12

Department of CSE Page 13

Department of CSE Page 14

Department of CSE Page 15

Department of CSE Page 16

Department of CSE Page 17

Department of CSE Page 18

Department of CSE Page 19

Department of CSE Page 20

Department of CSE Page 21

Department of CSE Page 22

Department of CSE Page 23

Department of CSE Page 24

Department of CSE Page 25

Department of CSE Page 26

Department of CSE Page 27

Department of CSE Page 28

Department of CSE Page 29

 Push Down Automata

pushdown automata can recognize all deterministic context-free languages while nondeterministic ones can

recognize all context-free languages, with the former often used in parser design.

The term "pushdown" refers to the fact that the stack can be regarded as being "pushed down" like a tray

dispenser at a cafeteria, since the operations never work on elements other than the top element. A stack

automaton, by contrast, does allow access to and operations on deeper elements. Stack automata can

recognize a strictly larger set of languages than pushdown automata. A nested stack automaton allows

full access, and also allows stacked values to be entire sub-stacks rather than just single finite symbols.

Informal description

A diagram of a pushdown automaton

A finite state machine just looks at the input signal and the current state: it has no stack to work

with. It chooses a new state, the result of following the transition. A pushdown automaton (PDA)

differs from a finite state machine in two ways:

1. It can use the top of the stack to decide which transition to take.

2. It can manipulate the stack as part of performing a transition.

A pushdown automaton reads a given input string from left to right. In each step, it chooses a

transition by indexing a table by input symbol, current state, and the symbol at the top of the stack. A

pushdown automaton can also manipulate the stack, as part of performing a transition. The

manipulation can be to push a particular symbol to the top of the stack, or to pop off the top of the stack.

The automaton can alternatively ignore the stack, and leave it as it is.

Put together: Given an input symbol, current state, and stack symbol, the automaton can follow a

transition to another state, and optionally manipulate (push or pop) the stack.

If, in every situation, at most one such transition action is possible, then the automaton is called a

deterministic pushdown automaton (DPDA). In general, if several actions are possible, then the

automaton is called a general, or nondeterministic, PDA. A given input string may drive a

nondeterministic pushdown automaton to one of several configuration sequences; if one of them leads to

an accepting configuration after reading the complete input string, the latter is said to belong to the

language accepted by the automaton.

Definition of the Pushdown Automaton:

https://en.wikipedia.org/wiki/Deterministic_pushdown_automata
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Nested_stack_automaton
https://en.wikipedia.org/wiki/Finite_state_machine
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton

Department of CSE Page 30

Formal definition

We use standard formal language notation: denotes the set of strings over alphabet and denotes the

empty string.

A PDA is formally defined as a 7-tuple: where

is a finite set of states

 is a finite set which is called the input alphabet

 is a finite set which is called the stack alphabet

 is a finite subset of , the transition relation.

 is the start state

 is the initial stack symbol

 is the set of accepting states

An element is a transition of . It has the intended meaning that , in state , on the input and with as

topmost stack symbol, may read , change the state to , pop , replacing it by pushing . The component of

the transition relation is used to formalize that the PDA can either read a letter from the input, or proceed

leaving the input untouched.

In many texts the transition relation is replaced by an (equivalent) formalization, where

 is the transition function, mapping into finite subsets of

Here contains all possible actions in state with on the stack, while reading on the input. One writes

for example precisely when because . Note that finite in this definition is essential.

Computations

https://en.wikipedia.org/wiki/Empty_string

Department of CSE Page 31

A step of the pushdown automaton

In order to formalize the semantics of the pushdown automaton a description of the current

situation is introduced. Any 3-tuple is called an instantaneous description (ID) of , which includes the

current state, the part of the input tape that has not been read, and the contents of the stack (topmost

symbol written first). The transition relation defines the step-relation of on instantaneous descriptions.

For instruction there exists a step , for every and every .In general pushdown automata are

nondeterministic meaning that in a given instantaneous description there may be several possible steps.

Any of these steps can be chosen in a computation. With the above definition in each step always a

single symbol (top of the stack) is popped, replacing it with as many symbols as necessary. As a

consequence no step is defined when the stack is empty.Computations of the pushdown automaton are

sequences of steps. The computation starts in the initial state with the initial stack symbol on the stack,

and a string on the input tape, thus with initial description . There are two modes of accepting. The

pushdown automaton either accepts by final state, which means after reading its input the automaton

reaches an accepting state (in), or it accepts by empty stack (), which means after reading its input the

automaton empties its stack. The first acceptance mode uses the internal memory (state), the second the

external memory (stack).

Formally one defines

1. with and (final state)

2. with (empty stack)

Here represents the reflexive and transitive closure of the step relation meaning any number of

consecutive steps (zero, one or more).For each single pushdown automaton these two languages need to

have no relation: they may be equal but usually this is not the case. A specification of the automaton

should also include the intended mode of acceptance. Taken over all pushdown automata both

acceptance conditions define the same family of languages.

Theorem. For each pushdown automaton one may construct a pushdown automaton such that , and

vice versa, for each pushdown automaton one may construct a pushdown automaton such that

Example

The following is the formal description of the PDA which recognizes the language by final state:

PDA for

(by final state), where

 states:

 input alphabet:

 stack alphabet:
 start state:
 start stack symbol: Z
 accepting states:

Department of CSE Page 32

The transition relation consists of the following six instructions:,,,,, and.In words, the first two

instructions say that in state p any time the symbol 0 is read, one A is pushed onto the stack.

Pushing symbol A on top of another A is formalized as replacing top A by AA (and similarly for pushing

symbol A on top of a Z).The third and fourth instructions say that, at any moment the automaton may

move from state p to state q.The fifth instruction says that in state q, for each symbol 1 read, one A is

popped.

Finally, the sixth instruction says that the machine may move from state q to accepting state r only

when the stack consists of a single Z.There seems to be no generally used representation for PDA. Here

we have depicted the instruction by an edge from state p to state q labelled by (read a; replace A by).

Understanding the computation process

Accepting computation for 0011

The following illustrates how the above PDA computes on different input strings. The subscript

M from the step symbol is here omitted.

a. Input string = 0011. There are various computations, depending on the moment the move from

state p to state q is made. Only one of these is accepting.

i. The final state is accepting, but the input is not accepted this way as it has not been

read.

ii. No further steps possible.

iii. Accepting computation: ends in accepting state, while complete input has been read.

b. Input string = 00111. Again there are various computations. None of these is accepting.

i. The final state is accepting, but the input is not accepted this way as it has not been

read.

ii. No further steps possible.

iii. The final state is accepting, but the input is not accepted this way as it has not been

(completely) read.

Description

A pushdown automaton (PDA) is a finite state machine which has an additional stack storage. The

transitions a machine makes are based not only on the input and current state, but also on the stack. The

formal definition (in our textbook) is that a PDA is this:

M = (K,Σ,Γ,Δ,s,F) where K = finite state set

 Σ = finite input alphabet

 Γ = finite stack alphabet

 s ∈ K: start state

 F ⊆ K: final states

 The transition relation, Δ is a finite subset of (K×(Σ𝖴{ε})×Γ*) × (K×Γ*)

We have to have the finite qualifier because the full subset is infinite by virtue of the Γ*

component. The meaning of the transition relation is that, for σ ∈ Σ, if ((p,σ,α),(q,β)) ∈ Δ:

Department of CSE Page 33

 the current state is p

 the current input symbol is σ

 the string at the top of the stack is α then:

 the new state is q

 replace α on the top of the stack by β (pop the α and push the β)

Otherwise, if ((p,ε,α),(q,β)) ∈ Δ, this means that if

 the current state is p

 the string at the top of the stack is α then (not consulting the input symbol), we can

 change the state is q

 replace α on the top of the stack by β

Machine Configuration, yields, acceptance

A machine configuration is an element of K×Σ*×Γ*.

(p,w,γ) = current state, unprocessed input, stack content) We

define the usual yields relationships:

(p,σw,αγ) ⊢ (q,w,βγ) if ((p,σ,α),(q,β)) ∈ Δ or (p,w,αγ) ⊢ (q,w,βγ) if ((p,ε,α),(q,β)) ∈ Δ As

expected, ⊢* is the reflexive, transitive closure of ⊢.

A string w is accepted by the PDA if

(s,w,ε) ⊢* (f,ε,ε)

Namely, from the start state with empty stack, we

 process the entire string,

 end in a final state

 end with an empty stack.

The language accepted by a PDA M, L(M), is the set of all accepted strings.

The empty stack is our key new requirement relative to finite state machines. The examples that we

generate have very few states; in general, there is so much more control from using the stack memory.

Acceptance by empty stack only or final state only is addressed in problems 3.3.3 and 3.3.4.

Graphical Representation and ε-transition

The book does not indicate so, but there is a graphical representation of PDAs. A transition

((p,x,α),(q,β)) where x = ε or x ∈ Σ would be depicted like this (respectively):

 or

Department of CSE Page 34

The stack usage represented by α/β

represents these actions:

 the top of the stack must match α

 if we make the transition, pop α and push β

A PDA is non-deterministic. There are several forms on non-determinism in the description:

 Δ is a relation

 there are ε-transitions in terms of the input

 there are ε-transitions in terms of the stack contents

The true PDA ε-transition, in the sense of being equivalent to the NFA ε-transition is this:

because it consults neither the input, nor the stack and will leave the previous configuration intact.

Palindrome examples

These are examples 3.3.1 and 3.3.2 in the textbook. The first is this:

{x ∈ {a,b,c}* : x = wcwR for w ∈ {a,b}*}

The machine pushes a's and b's in state s, makes a transition to f when it sees the middle marker, c, and

then matches input symbols with those on the stack and pops the stack symbol. Non- accepting string

examples are these:

ε in state s

ab in state s with non-empty stack

abcab in state f with unconsumed input and non-empty stack abcb in

state f with non-empty stack

abcbab in state f with unconsumed input and empty stack

Observe that this PDA is deterministic in the sense that there are no choices in transitions. The

second example is:

{x ∈ {a,b}* : x = wwR for w ∈ {a,b}*}

This PDA is identical to the previous one

except for the ε-transition

Department of CSE Page 35

Nevertheless, there is a significant difference in that this PDA must guess when to stop pushing

symbols, jump to the final state and start matching off of the stack. Therefore this machine is decidedly

non-deterministic. In a general programming model (like Turing Machines), we have the luxury of

preprocessing the string to determine its length and thereby knowing when the middle is coming.

The anbn language

The language is L = { w ∈ {a,b}* : w = anbn, n ≥ 0 }. Here are two PDAs for L:

and

The idea in both of these machines is to stack the a's and match off the b's. The first one is non-

deterministic in the sense that it could prematurely guess that the a's are done and start matching off b's.

The second version is deterministic in that the first b acts as a trigger to start matching off. Note that we

have to make both states final in the second version in order to accept ε.

The equal a's and b's language

This is example 3.3.3 in the textbook. Let us use the convenience notation:

#σ(w) = the number of occurrences of σ in w

The language is L = {w ∈ {a,b}*: #a(w) = #b(w) }. Here is the PDA:

As you can see, most of the activity surrounds the behavior in state q. The idea is have the stack

maintain the excess of one symbol over the other. In order to achieve our goal, we must know when the

stack is empty.

Empty Stack Knowledge

There is no mechanism built into a PDA to determine whether the stack is empty or not. It's

important to realize that the transition:

 x = σ ∈ Σ or ε

means to do so without consulting the stack; it says nothing about whether the stack is empty or not.

Nevertheless, one can maintain knowledge of an empty stack by using a dedicated stack symbol, c,

representing the "stack bottom" with these properties:

 it is pushed onto an empty stack by a transition from the start state with no other outgoing or

incoming transitions

 it is never removed except by a transition to state with no other outgoing transitions

Department of CSE Page 36

Behavior of PDA

The three groups of loop transitions in state q represent these respective functions:

 input a with no b's on the stack: push a

 input b with no a's on the stack: push b

 input a with b's on the stack: pop b; or, input b with a's on the stack: pop a

For example if we have seen 5 b's and 3 a's in any order, then the stack should be "bbc". The transition

to the final state represents the only non-determinism in the PDA in that it must guess when the input is

empty in order to pop off the stack bottom.

DPDA/DCFL

The textbook defines DPDAs (Deterministic PDAs) and DCFLs (Deterministic CFLs) in the

introductory part of section 3.7. According to the textbook's definition, a DPDA is a PDA in which

no state p has two different outgoing transitions

((p,x,α),(q,β)) and ((p,x′,α′),(q′,β′))

which are compatible in the sense that both could be applied. A DCFL is basically a language which

accepted by a DPDA, but we need to qualify this further.

We want to argue that the language L = { w ∈ {a,b}* : #a(w) = #b(w)} is deterministic context free

in the sense there is DPDA which accepts it.

In the above PDA, the only non-determinism is the issue of guessing the end of input; however this

form of non-determinism is considered artificial. When one considers whether a language L supports a

DPDA or not, a dedicated end-of-input symbol is always added to strings in the language.

Formally, a language L over Σ is deterministic context free, or L is a DCFL , if L$ is

accepted by a DPDA M

where $ is a dedicated symbol not belonging to Σ. The significance is that we can make

intelligent usage of the knowledge of the end of input to decide what to do about the stack. In our case,

we would simply replace the transition into the final state by:

With this change, our PDA is now a DPDA:

a*b* examples

Two common variations on a's followed by b's. When they're equal, no stack bottom is necessary.

When they're unequal, you have to be prepared to recognize that the stacked a's have been completely

matched or not.

Department of CSE Page 37

a. { anbn : n ≥ 0 }

b. { ambn : 0 ≤ m

< n }

Let's look at a few sample runs of (b). The idea is that you cannot enter the final state with an "a" still on

the stack. Once you get to the final state, you can consume remaining b's and end marker.

We can start from state 1 with the stack bottom pushed on:

success: abb

state input stack

1 abb$ c

1 bb$ ac

2 b$ ac

2 $ c

3 ε ε

success: abbbb state input

 stack

1 abbbb$ c

1 bbbb$ ac

2 bbb$ ac

2 bb$ c

3 b$ ε

3 $ ε

Department of CSE Page 38

3 ε ε (fail:

ab)

state input stack

1 ab$ c

1 b$ ac

2 $ ac

(fail: ba)

state input stack

1 ba$ c

2 a$ c

Observe that a string like abbba also fails due to the inability to consume the very last a.

Equivalence of PDA’s and CFG’s:

If a grammar G is context-free, we can build an equivalent nondeterministic PDA which accepts the

language that is produced by the context-free grammar G. A parser can be built for the grammar G.

Also, if P is a pushdown automaton, an equivalent context-free grammar G can be constructed where

L(G) = L(P)

In the next two topics, we will discuss how to convert from PDA to CFG and vice versa.

Algorithm to find PDA corresponding to a given CFG

Input − A CFG, G = (V, T, P, S)

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) Step 1 −

Convert the productions of the CFG into GNF. Step 2 − The

PDA will have only one state {q}.

Step 3 − The start symbol of CFG will be the start symbol in the PDA.

Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the

terminals of the CFG will be the input symbols of the PDA.

Department of CSE Page 39

Step 5 − For each production in the form A → aX where a is terminal and A, X are combination of

terminal and non-terminals, make a transition δ (q, a, A).

Problem

Construct a PDA from the following CFG.

G = ({S, X}, {a, b}, P, S)

where the productions are −

S → XS | ε , A → aXb | Ab | ab

Solution

Let the equivalent PDA,

P = ({q}, {a, b}, {a, b, X, S}, δ, q, S)

where δ −

δ(q, ε , S) = {(q, XS), (q, ε)}

δ(q, ε , X) = {(q, aXb), (q, Xb), (q, ab)} δ(q, a,

a) = {(q, ε)}

Department of CSE Page 40

δ(q, 1, 1) = {(q, ε)}

Algorithm to find CFG corresponding to a given PDA

Input − A CFG, G = (V, T, P, S)

Output − Equivalent PDA, P = (Q, ∑, S, δ, q0, I, F) such that the non- terminals of the grammar G will

be {Xwx | w,x ∈ Q} and the start state will be Aq0,F.

Step 1 − For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ ∑, if δ (w, a, ε) contains (y, m) and (z, b, m) contains (x,

ε), add the production rule Xwx → a Xyzb in grammar G.

Step 2 − For every w, x, y, z ∈ Q, add the production rule Xwx → XwyXyx in grammar G.

Step 3 − For w ∈ Q, add the production rule Xww → ε in grammar G.

Parsing is used to derive a string using the production rules of a grammar. It is used to check the

acceptability of a string. Compiler is used to check whether or not a string is syntactically correct. A

parser takes the inputs and builds a parse tree.

A parser can be of two types −

 Top-Down Parser − Top-down parsing starts from the top with the start-symbol and

derives a string using a parse tree.

 Bottom-Up Parser − Bottom-up parsing starts from the bottom with the string and comes

to the start symbol using a parse tree.

Design of Top-Down Parser

For top-down parsing, a PDA has the following four types of transitions −

 Pop the non-terminal on the left hand side of the production at the top of the stack and push

its right-hand side string.

 If the top symbol of the stack matches with the input symbol being read, pop it.

 Push the start symbol ‘S’ into the stack.

 If the input string is fully read and the stack is empty, go to the final state ‘F’.

Example

Design a top-down parser for the expression "x+y*z" for the grammar G with the following

production rules −

P: S → S+X | X, X → X*Y | Y, Y → (S) | id

Department of CSE Page 41

Solution

If the PDA is (Q, ∑, S, δ, q0, I, F), then the top-down parsing is − (x+y*z,

I) ⊢(x +y*z, SI) ⊢ (x+y*z, S+XI) ⊢(x+y*z, X+XI)

⊢(x+y*z, Y+X I) ⊢(x+y*z, x+XI) ⊢(+y*z, +XI) ⊢ (y*z, XI)

⊢(y*z, X*YI) ⊢(y*z, y*YI) ⊢(*z,*YI) ⊢(z, YI) ⊢(z, zI) ⊢(ε, I)

Design of a Bottom-Up Parser

For bottom-up parsing, a PDA has the following four types of transitions −

 Push the current input symbol into the stack.

 Replace the right-hand side of a production at the top of the stack with its left-hand side.

 If the top of the stack element matches with the current input symbol, pop it.

 If the input string is fully read and only if the start symbol ‘S’ remains in the stack, pop it and go

to the final state ‘F’.

Example

Design a top-down parser for the expression "x+y*z" for the grammar G with the following

production rules −

P: S → S+X | X, X → X*Y | Y, Y → (S) | id

Solution

If the PDA is (Q, ∑, S, δ, q0, I, F), then the bottom-up parsing is − (x+y*z,

I) ⊢ (+y*z, xI) ⊢ (+y*z, YI) ⊢ (+y*z, XI) ⊢ (+y*z, SI)

⊢(y*z, +SI) ⊢ (*z, y+SI) ⊢ (*z, Y+SI) ⊢ (*z, X+SI) ⊢ (z, *X+SI)

⊢ (ε, z*X+SI) ⊢ (ε, Y*X+SI) ⊢ (ε, X+SI) ⊢ (ε, SI)

Deterministic Pushdown Automata:

In automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the

pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-

free languages, a proper subset of context-free languages.

https://en.wikipedia.org/wiki/Automata_theory
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/Context-free_language

Department of CSE Page 42

Machine transitions are based on the current state and input symbol, and also the current topmost

symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect.

Machine actions include pushing, popping, or replacing the stack top. A deterministic pushdown

automaton has at most one legal transition for the same combination of input symbol, state, and top

stack symbol. This is where it differs from the nondeterministic pushdown automaton.

Formal definition

A (not necessarily deterministic) PDA can be defined as a 7-tuple:

Where is a finite set of states

 is a finite set of input symbols
 is a finite set of stack symbols
 is the start state
 is the starting stack symbol
 , where is the set of accepting states
 is a transition function, wherewhere is the Kleene star, meaning that is "the set of all finite

strings (including the empty string) of elements of ", denotes the empty string, and is the

power set of a set .M is deterministic if it satisfies both the following conditions:

 For any , the set has at most one element.

 For any , if , then for every

There are two possible acceptance criteria: acceptance by empty stack and acceptance by final state.

The two are not equivalent for the deterministic pushdown automaton (although they are for the non-

deterministic pushdown automaton). The languages accepted by empty stack are those languages that

are accepted by final state and are prefix-free: no word in the language is the prefix of another word in

the language.

The usual acceptance criterion is final state, and it is this acceptance criterion which is used to define

the deterministic context-free languages.

Languages recognized

If is a language accepted by a PDA , it can also be accepted by a DPDA if and only if there is a single

computation from the initial configuration until an accepting one for all strings belonging to . If can be

accepted by a PDA it is a context free language and if it can be accepted by a DPDA it is a

deterministic context-free language.

Not all context-free languages are deterministic. This makes the DPDA a strictly weaker device than

the PDA. For example, the language of even-length palindromes on the alphabet of 0 and 1

https://en.wikipedia.org/wiki/Kleene_star
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Empty_string
https://en.wikipedia.org/wiki/Power_set
https://en.wikipedia.org/wiki/Deterministic_context-free_languages
https://en.wikipedia.org/wiki/Palindrome

Department of CSE Page 43

has the context-free grammar S → 0S0 | 1S1 | ε. An arbitrary string of this language

cannot be parsed without reading all its letters first which means that a pushdown

automaton has to try alternative state transitions to accommodate for the different possible

lengths of a semi-parsed string.

Restricting the DPDA to a single state reduces the class of languages accepted to the LL(1) languages. In

the case of a PDA, this restriction has no effect on the class of languages accepted.

https://en.wikipedia.org/wiki/LL%281%29_language
https://en.wikipedia.org/wiki/LL%281%29_language

	Push Down Automata
	Informal description
	Formal definition
	Example
	Understanding the computation process
	Algorithm to find PDA corresponding to a given CFG
	Algorithm to find CFG corresponding to a given PDA
	Design of Top-Down Parser
	Design of a Bottom-Up Parser
	Formal definition (1)
	Languages recognized

